# Estimating online ad effectiveness

Kay H. Brodersen Hal R. Varian Google,Inc.

January 7, 2015

### A note about the paper

- Created using knitr
- Allows you to merge LATEXand R commands
- Runs R each time you change paper and caches results
- Inserts R code and output into paper
- Voila: reproducible research

### Estimating online ad effectiveness

- 1. Apply treatment: change ad spend, bid, budget, etc.
  - 1.1 Treat in some places but not others
  - 1.2 Treat in some times but not others
- 2. Compare to counterfactual: what would have happened without experiment?
- Of course, counterfactual can not be observed, so it must be estimated

#### Procedure

- Train a model to predict metric of interest such as website visits or revenue.
  - Test the model on out-of-sample data to evaluate performance.
- Treat Apply model to periods or places where treatment was applied to estimate counterfactual
- Compare actual and (estimated) counterfactual outcomes.

# Hypothetical example of train-test-treat



### Bayesian Structural Time Series

We will do this in a time series context using BSTS (available from CRAN.) BSTS combines:

Kalman filter. Accounts for seasonality and trend Spike-and-slab regression. Automated selection of predictors

Bayesian model averaging. Avoids overfitting.

Described in Scott-Varian [2013,2014], Brodersen et. al. [2013]. Related to "interrupted regression", "synthetic controls".

## Predictors selected by BSTS



### Prediction from BSTS



## Research strategy?

- 1. Use a parametric model for impact of ad campaign?
  - Benefit: Can use all the data to estimate
  - Cost: Restrictive functional form: a parallel shift
- 2. Use alternative estimation technique?
- 3. Use different models for seasonality and trend

## 1. Use parallel shift for ad impact



### Boxcar indicator variable for campaign



#### 2. Alternative estimation: linear model

Drop Kalman filter, just use simple linear model

- July 4 holiday dummy
- Top two categories from Google Trends as regressors



#### Deseasonalized the data first

Deseasonalize by fitting model with holiday regressor + day-of-week dummies. (Explain spike.)



### Alternative approaches

- 1. Make no adjustment for seasonality (since predictor already has appropriate seasonality)
- 2. Deseasonalize both predictor and outcome
  - Use boxcar regressor
  - Use extrapolation

## 3. Alternative seasonality: detrend first

Deseasonalize by fitting model with holiday regressor + day of week dummies. (Explain spike.)



# Use weekly data



# Summary

|    | method                     | estimate |
|----|----------------------------|----------|
| 1  | bsts-extrap                | 1830.43  |
| 2  | bsts-boxcar                | 1362.88  |
| 3  | bsts-boxcar-all-predictors | 1279.05  |
| 4  | bsts-boxcar-top-predictors | 1327.06  |
| 5  | lm-boxcar                  | 1434.57  |
| 6  | lm-extrap                  | 1289.19  |
| 7  | not deseasonalized         | 1393.41  |
| 8  | deseasonalized-boxcar      | 1300.67  |
| 9  | deseasonalized-extrap      | 1298.37  |
| 10 | week-boxcar                | 1248.61  |

#### What about revenue?

- Ad clicks may cannibalize search clicks
- May want to look at total number of clicks (i.e., visitors)
- But ad clicks may be worth more or less than search clicks, so really want revenue (or profit)
- Can model ad revenue, search revenue separately or together

Examine a different advertiser using a different set of possible predictors

## BSTS: predictor selection for visits



#### BSTS: Visits actual and counterfactual

Uses the BSTS extrapolation model and a linear regression



## BSTS: predictor selection for revenue



#### BSTS: Revenue actual and counterfactual

Uses the BSTS extrapolation model and a linear regression



#### Revenue cannibalization

When campaign begins ad revenue increases significantly, organic revenue falls somewhat.

