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A note about the paper

• Created using knitr

• Allows you to merge LATEXand R commands

• Runs R each time you change paper and caches results

• Inserts R code and output into paper

• Voila: reproducible research



Estimating online ad effectiveness

1. Apply treatment: change ad spend, bid, budget, etc.

1.1 Treat in some places but not others
1.2 Treat in some times but not others

2. Compare to counterfactual: what would have happened
without experiment?

3. Of course, counterfactual can not be observed, so it must be
estimated



Procedure

Train a model to predict metric of interest such as website
visits or revenue.

Test the model on out-of-sample data to evaluate
performance.

Treat Apply model to periods or places where treatment
was applied to estimate counterfactual

Compare actual and (estimated) counterfactual outcomes.



Hypothetical example of train-test-treat
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Bayesian Structural Time Series

We will do this in a time series context using BSTS (available from
CRAN.) BSTS combines:

Kalman filter. Accounts for seasonality and trend

Spike-and-slab regression. Automated selection of predictors

Bayesian model averaging. Avoids overfitting.

Described in Scott-Varian [2013,2014], Brodersen et. al. [2013].
Related to “interrupted regression”, “synthetic controls”.



Predictors selected by BSTS

Law_and_Government__Public_Safety

Health__Vision_Care

Internet_and_Telecom__Service_Providers

Shopping__Photo_and_Video_Services

Computers_and_Electronics__Electronics_and_Electrical

Inclusion Probability

0.0 0.4 0.8



Prediction from BSTS
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Research strategy?

1. Use a parametric model for impact of ad campaign?
• Benefit: Can use all the data to estimate
• Cost: Restrictive functional form: a parallel shift

2. Use alternative estimation technique?

3. Use different models for seasonality and trend



1. Use parallel shift for ad impact
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Boxcar indicator variable for campaign

Computers_and_Electronics__Electronics_and_Electrical

Sports

Online_Communities__File_Sharing_and_Hosting

Shopping__Photo_and_Video_Services

campaign

Inclusion Probability

0.0 0.4 0.8



2. Alternative estimation: linear model

Drop Kalman filter, just use simple linear model

• July 4 holiday dummy

• Top two categories from Google Trends as regressors
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Deseasonalized the data first

Deseasonalize by fitting model with holiday regressor +
day-of-week dummies. (Explain spike.)
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Alternative approaches

1. Make no adjustment for seasonality (since predictor already
has appropriate seasonality)

2. Deseasonalize both predictor and outcome
• Use boxcar regressor
• Use extrapolation



3. Alternative seasonality: detrend first

Deseasonalize by fitting model with holiday regressor + day of
week dummies. (Explain spike.)
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Use weekly data
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Summary

method estimate

1 bsts-extrap 1830.43
2 bsts-boxcar 1362.88
3 bsts-boxcar-all-predictors 1279.05
4 bsts-boxcar-top-predictors 1327.06
5 lm-boxcar 1434.57
6 lm-extrap 1289.19
7 not deseasonalized 1393.41
8 deseasonalized-boxcar 1300.67
9 deseasonalized-extrap 1298.37

10 week-boxcar 1248.61



What about revenue?

• Ad clicks may cannibalize search clicks

• May want to look at total number of clicks (i.e., visitors)

• But ad clicks may be worth more or less than search clicks, so
really want revenue (or profit)

• Can model ad revenue, search revenue separately or together

Examine a different advertiser using a different set of possible
predictors



BSTS: predictor selection for visits

Movie.Rentals...Sales.Queries

Movie.Rentals...Sales.Matched

Movie.Rentals...Sales.Impressions

Movie.Rentals...Sales.Clicks

campaign

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0



BSTS: Visits actual and counterfactual

Uses the BSTS extrapolation model and a linear regression
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BSTS: predictor selection for revenue

Movie.Rentals...Sales.Revenue

Music.Clicks

Movie.Rentals...Sales.Impressions

Movie.Rentals...Sales.Clicks

campaign

Inclusion Probability

0.0 0.2 0.4 0.6 0.8 1.0



BSTS: Revenue actual and counterfactual

Uses the BSTS extrapolation model and a linear regression
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Revenue cannibalization

When campaign begins ad revenue increases significantly, organic
revenue falls somewhat.
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